

Mr G’s Java Jive: Dealing With Dates – Part 2 Page 19-1

Mr G’s Java Jive

#19: Dealing With Dates – Part 2
In the previous handout, I introduced you to getting dates, showing dates, and formatting dates. But at
the time doing math with dates was beyond our abilities. There were a number of reasons for this. One
was that dates were objects and so couldn’t be worked on like normal primitives. Another was that the
time information inside a Date object is stored in milliseconds, which requires the use of a long data
type. But the third, and most important reason is that computers don’t quite do date math the same
way that we do intuitively.

Enough Problems for Several Months
 If I ask you how long it was from June 19, 2000 to November 20, 2000, you’ll probably think for
a few seconds and then say five months and one day. That’s because to you it’s one month from June
19 to July 19, a second one from July 19 to August 19, a third one from August 19 to September 19, a
fourth one from September 19 to October 19, a fifth one from October 19 to November 19, and then
one day from November 19 to November 20. It doesn’t matter to you that June and September only
have 30 days in them. To humans, a month is the distance from a certain date in the first month
to the same date in the next.
 To computers it’s different. Once we were able to do some relative simple date math, Java would
probably tell us that it was 154 days. Well, that’s correct, but how many months is that? That’s what
most people want to know.
 How many months? Well, that depends on how big your months are. In 30-day months it would be
five months and four days. In 31-day months (which there are more of) it would be four months and
30 days. Neither of these answers is the five months and a day that most humans would expect.

Getting the Time Span with TimeSpan
So now that you’ve seen the problem, let’s solve it, using the gatling.timeSpan method in a new program
called SecondDate. As usual, it will be based on BigLoop, so we can run it over and over again. And as
before, we’ll create a special method called datemain to do the work for us and be called over and over
again from the main method. Here’s what it looks like:

public static void datemain()
 {//start datemain
 //variables
 Date date1 = new Date();
 Date date2 = new Date();
 String d1string;
 String d2string;
 int span;

 //date formats
 DateFormat lg = DateFormat.getDateInstance(DateFormat.LONG);

 //get input
 System.out.print("This program will tell you the amount of time ");
 System.out.println(“between two dates.");
 System.out.print("\tPlease enter the first date: ");
 date1=gatling.getDate();
 System.out.print("\tPlease enter the second date: ");
 date2=gatling.getDate();

Code continued on next page

Mr G’s Java Jive: Dealing With Dates – Part 2 Page 19-2

 //do calculations and formatting
 span=gatling.timeSpan(date1,date2);
 d1string=lg.format(date1);
 d2string=lg.format(date2);

 //show output
 System.out.print("The amount of time between "+d1string+" and "+d2string);
 System.out.println(" is "+span);

 }//end datemain

Now compile and run the program with the dates of 6/19/2000 and 11/20/2000. Your output should
look like the example below:

The amount of time given is 501. But 501 of what? It can’t be 501 days, because we know that it’s 154
days. It can’t be 501 months or years either, because they’re both way too much time. What is it 501
of? Let’s try some more dates to find out. Now try 2/3/1993 and 2/3/2009.

This time it gives a time of 160000. But again, what is it? It can’t be 160,000 years. Again, that’s
obviously way too long. Let’s do one more set. Try from 1/1/1960 to 6/1/1965.

This time it gives us 50500. What do these numbers represent?

Mr G’s Java Jive: Dealing With Dates – Part 2 Page 19-3

Deceptively Simple
That’s right, the answer is deceptively simple. We knew when we got started that there were five
months and a day between 6/19/2000 and 11/20/2000. What answer did the program give us? 501.
 A little quick math will tell you that it’s exactly 16 years from 2/3/1993 to 2/3/2007. What
answer did the program give us? 160000.
 Finally, it’s five years and five months from 1/1/1960 to 6/1/1965. The answer the computer gave
us? 505000.

The last two digits in the answer represent the number of days, the two digits before that represent
the number of months, and any digits before that represent the number of years (if any).
 Knowing this, it’s clear to see that 501 was five months and one day, just what we expected it to
be. 160000 was 16 years, 0 months, and 0 days. 50500 was five years, five months, and 0 days.
Does it make sense now?

Taking a Negative View
In the three examples we worked with so far, we started with the earlier date and went to the later
one. But what happens if we start with the later date and then go to the earlier one? Let’s find out with
8/20/2009 and 1/1/2009.

This time the answer is a negative number. It’s -719. What’s the difference? In either case, the
absolute value of the number is the time span between the two dates in years, months, and days. But a
positive value means it’s the time span from the first date until the second date, while a negative value
is the amount of time that has passed from the second date to the first one. I guess if you look at
everything as being a measurement of time until the second date, the negative number just means that
you’re going backwards in time.

More to Do (But Not Here)
So now that you know about timeSpan, you can finally write that program that tells the user exactly
how old they are. But maybe that’ a bit too much information. Maybe your user doesn’t need to know
that she’s 270912. Maybe it’s just enough to tell her that she’s 27 years old. And perhaps the user
who is 151119 and anxious to get his driver’s license would rather have you say that he’s almost 16
years old.
 These are all things that you can do, and are all things that would make wonderful assignments for
you, so you won’t be seeing either of those problems solved on these pages.

What’s Next?
In handout #20 we’ll start working with arrays. They give you the ability to use groups of similar
variables very slickly and efficiently.

Mr G’s Java Jive: Dealing With Dates – Part 2 Page 19-4

This page intentionally left almost blank.

